Объемы производства и сферы использования армированных волокнами полимерных композитов во всем мире непрерывно растут. Это обусловлено не только их высокой удельной прочностью, но и такими эксплуатационными свойствами, как коррозионная стойкость, морозостойкость, низкая теплопроводность и др. В Японии, Германии, США, Нидерландах значительное внимание уделяется исследованиям с целью использования полимерных композитов при изготовлении бетонных армированных конструкций.
В нашей стране основные и весьма многочисленные работы в этом направлении относятся к первой половине 60-х годов прошлого столетия, и тот факт, что к настоящему времени использование полимерных композитов не стало массовым явлением, объясняется целым рядом объективных причин. Одной из них является высокая стоимость композитов в сравнении с металлической арматурой и ограниченный ассортимент необходимого сырья.
Отмечается возможность использования стеклопластиковых композитов в конструкциях из бетона пониженной щелочности, в сухих бетонах, а также в конструкциях электротехнического назначения.
Все это связано с тем, что традиционное алюмоборосиликатное стекловолокно не обладает щелочестойкостью из-за разрушения (растворения) в щелочах кремнеземного каркаса, и даже лучшие полимерные связующие не способны надежно защитить его от воздействия щелочи. Поэтому в последние годы предпринимаются попытки найти современные щелочестойкие полимерные композиты. Накопленные к настоящему времени литературные данные о стойкости композитных материалов в щелочных средах весьма ограничены и трудно сопоставимы, а порой противоречивы.
Целью наших исследований, начатых в 1998 г., было определение коррозионной стойкости однонаправленных армированных полимерных композитов различного состава в щелочной среде бетона. При постановке исследований мы исходили из того, что коррозионная стойкость композитов определяется следующими факторами, приведенными в порядке увеличения их значимости:
химической стойкостью связующего
наличием трещин и пор
химической стойкостью армирующих волокон.
В качестве менее стойкой в ряду связующих была выбрана ненасыщенная полиэфирная смола ПН-1; в качестве наиболее стойкой специально созданная по результатам предварительных экспериментов эпоксидная композиция. Промежуток между ними заняли химстойкая ненасыщенная полиэфирная смола Polykon K 412 («Нитрокемия», Венгрия) на основе бисфенола аналог отечественной смолы ПН-15, которая в настоящее время не производится, а также винилэфирные смолы — Deraken 411-45 фирмы «Dow Chemical Co.» и отечественная ЭВС.
Щелочестойкость ненасыщенных полиэфиров очень мала. Их «слабое звено» — сложноэфирная группа, по которой проходит щелочной гидролиз с разрывом связи «ацил-кислород». Винилэфирные смолы по щелочестойкости считаются сопоставимыми с эпоксидными, а устойчивость в щелочной среде ненасыщенных полиэфиров на основе бисфенола несколько ниже. Эпоксидные композиции считаются практически устойчивыми в щелочной среде, хотя, как показал наш опыт, отдельные представители этого класса заметно отличаются один от другого по щелочестойкости.
Армирующие волокна в нашей работе представлены ровингами алюмоборосиликатного волокна РБР 13-2640 (44)-9 с прямым замасливателем под полиэфирные и винилэфирные смолы и РБН 10-1260(4Э) под эпоксидную смолу, ровингом щелочестойкого цирконийсодержащего стекловолокна РЦР15-190-2520-9 (специально для фибробетонов) с прямым замасливателем под полиэфирную смолу, а также щелочестойкими базальтовыми ровингами БР13-600(4С) с прямым замасливателем под эпоксидные смолы и БР10-840 с парафиновым замасливателе. Физико-механические показатели полимерных композитов различного состава в исходном состоянии приведены в табл. 1.
Условное обозначение композита | Ровинг | Смола | Разрушающее напряжение при изгибе, МПа | Модуль упругости при изгибе, МПа |
---|---|---|---|---|
Баз + ЭД | БР13-600(4С) | Эпоксидная | 1327 | 35504 |
Б/щ + ЭД | РБН10-1260(4Э) | - | 1467 | 37457 |
Баз + D411 | БР10-840 | D411-45 | 1170 | 38872 |
Цк + D411 | РЦР15-190-2520-9 | - | 923 | 30019 |
Б/щ + D411 | РБР13-2640(44)-9 | - | 1408 | 39123 |
Б/щ + ЭВС | - | ЭВС | 1256 | 38969 |
Б/щ + К412 | - | Polykon K412 | 1187 | 36858 |
Б/щ + ПН | - | ПН-1 | 814 | 30340 |
Образцы композитов различного состава для испытаний изготовляли по единой схеме. Соответствующий ровинг пропускали через пропиточную ванну с нужным связующим, подогретым до 35–40°С, и затем уже пропитанный ровинг последовательно, виток за витком, наматывали в несколько слоев до толщины примерно 2,2 мм на плоскую металлическую пластину. Поверхность последней предварительно укрывали разделительной поливинилхлоридной пленкой, по краям которой также предварительно закрепляли ограничительные кольца из проволоки диаметром 2 мм. Затем поверх полученного сэндвича укладывали еще один слой разделительной пленки и помещали его между плитами пресса, опрессовывали пакет до соприкосновения плит пресса с ограничительными кольцами (~10 кгс/см2), разогревали до нужной температуры, выдерживали заданное время, охлаждали примерно до 60–80°С, сбрасывали давление, размыкали пресс и извлекали полученную заготовку.
Все композиты на основе полиэфирных и винилэфирных смол отверждали 30 мин при 140°С, а на основе эпоксидных смол — 2 ч при 150°С. Затем, освободив заготовку от верхней пленки, её разрезали по нижнему и верхнему торцам, получая таким образом две пластины нужного композита размером в плане 200х250 мм. Каждую из пластин, в свою очередь, разрезали вдоль по направлению волокон на три контрольных образца размером 200х80 мм.
После герметизации торцов контрольных образцов эпоксидным компаундом и последующего отверждения компаунда образцы помещали в среды: 1N раствор NaOH при 55°С; раствор, моделирующий вытяжку из цемента при 20°С; сухой или влажный бетон при 20°С.
При экспозиции любого композита в горячей щелочи он подвергается значительно более активному воздействию, чем в реальных условиях, поэтому испытания в 1N растворе NaOH следует рассматривать как ускоренные, а их результаты как сравнительные.
Были изготовлены гибкие связи базальтоэпоксипластиков двух диаметров (8,5 и 9,8 мм), представляющие собой стержни, отформованные из пропитанных щелочестойкой эпоксидной композицией базальтовых ровингов, которые были собраны в пучок путем опрессовки за счет обмотки полипропиленовой нитью. Условия и результаты коррозионных испытаний гибких связей представлены в табл. 2.
Условия испытаний | Разрушающая нагрузка, кгс, для связей диаметром, мм | |
---|---|---|
8,5 | 9,8 | |
До коррозионных испытаний | 350 | 440 |
30 сут в 1N растворе NaOH при +55°С | 250 | 313 |
То же, при напряжение 0,3 от разрушающего | - | 270 |
30 сут в водной вытяжке из цемента при +20°С | - | 370 |
То же, при +20°С при напряжение 0,3 от разрушающего | - | 345 |
5 циклов замораживания при -50°С и оттаивания в водной вытяжке из цемента | - | 430 |
Тепловлажностная обработка бетона при +80°С | 350 | - |
15 мес в бетоне при +20°С и относительной влажности 90% | 300 | - |
50 циклов замораживания при -20°С и оттаивания в бетоне | 390 | - |
Экспериментальные данные свидетельствуют, что коррозия полимерных композитов различного состава развивается с наибольшей скоростью в растворе горячей щелочи и с меньшей скоростью в растворах, моделирующих жидкую фазу бетона. В среде бетона коррозионные повреждения композитов замедляются еще в большей степени. Причем в сухом бетоне прочность полимерных композитов практически не снижается во времени. Заметного различия в степени устойчивости композитов в зависимости от условий твердения бетона не обнаружено (табл. 3).
Волокно + смола | Условия твердения бетона | Условия испытания | Степень сохранения прочности (над чертой) и модуля упругости (под чертой) при продолжительности экспозиции, сутки | ||
---|---|---|---|---|---|
28 | 180 | 360 | |||
Баз + ЭД | ТВО КНХ |
Сухие Сухие |
102/108 107/101 |
103/100 - |
102/115 - |
Б/щ + ЭД | ТВО ТВО |
Сухие Влажные |
92/97 86/90 |
91/94 77/91 |
85/82 61/91 |
Цк + D411 | ТВО ТВО КНХ |
Сухие Влажные Влажные |
- - - |
- 62/125 - |
102/108 52/106 47/109 |
Баз + D411 | ТВО КНХ |
Сухие Сухие |
89/98 94/101 |
81/83 - |
88/96 - |
Насыщение образца на 50% щелочью в центральной части вызвало небольшое уменьшение прочности, т. е. само по себе насыщение щелочью не снижает существенно прочности. Механизм разрушения материала в щелочной среде можно представить следующим образом. Через полимерную матрицу в материал проникает щелочной раствор, щелочь химически взаимодействует с волокном и растворяет его, зона химического взаимоействия постепенно продвигается в глубь материала, что сопровождается снижением его прочности.
Концентрация CS установлена экспериментально с учетом того, что при практически полном насыщении (180 сут экспозиции пластин толщиной 1,6 мм в цементной вытяжке) масса образцов за счет проникания раствора увеличилась на 0,001 г/см2.
Это количество раствора, отнесенное к ½ толщины пластины, составило 0,001:(0,16х0,5) = 0,0125 г/см3. Согласно расчетам, концентрация щелочи в вытяжке равнялась 3,26%. Тогда количество щелочи, проникшей в материал, составило 0,0125х0,0326 = 4,07х10-4 г/см3.
Величина CS принята равной 4,07х10-4 г/см3. Время t приравнено 50 годам, или 50х365х24х3600 = 1,577х109 с. Коэффициент диффузии D, согласно полученным в эксперименте данным, равен 8,23х10-10 см2/с. Значение N — количество щелочи, проникшей в материал, составило N = 5,233x10-4 г/см2.
Количество прореагировавшего со щелочью (NaOH) кремнезема (SiO2) пропорционально молекулярным массам участвующих в реакции веществ и равно 5,233х10-4х60:40= 7,849х10-4 г/см2, где во и 40 молекулярные массы SiO2 и NaOH.
Количество прореагировавшего базальтового волокна с учетом содержания в нем SiO2 в количестве 49,7% равно 7,849х10-4 :0,497 =15,792х10-4 г/см3.
Содержание волокна в композите равно 70% по массе, а объемная масса композита — 2,1 г/см3. Объем прореагировавшего слоя композита равен 15,792х10-4:0,7:2,1= 10,74х10-4 см3.
Отсюда толщина прореагировавшего слоя композита равна 11 мкм, а площадь сечения образца с исходным диаметром 8 мм уменьшится на 0,27%, т. е. сокращение сечения за счет химического взаимодействия щелочной среды бетона с базальтовым волокном за 50 лет будет незначительным.